Nichols algebras over solvable groups

Leandro Vendramin

Vrije Universiteit Brussel

Quantum Groups Seminar (QGS) – November 2025

Braided vector spaces

Let (V,c) be a braided vector space, that is a K-vector space V with a bijective linear map $c \in \mathbf{GL}(V \otimes V)$ that satisfies the braid equation:

$$(c \otimes \mathrm{id})(\mathrm{id} \otimes c)(c \otimes \mathrm{id}) = (\mathrm{id} \otimes c)(c \otimes \mathrm{id})(\mathrm{id} \otimes c).$$

Example 1:

Let V be a vector space with basis $\{x_1, x_2, \dots, x_{\theta}\}$. Then

$$c(x_i\otimes x_j)=q_{ij}x_j\otimes x_i,$$

where $q_{ij} \in K^{\times}$, is a braiding (of diagonal type).

Example 2:

Let G be a group and X be a union of conjugacy classes of G. Let Y be a K-vector space with basis X. Then

$$c(x \otimes y) = q_{xy}xyx^{-1} \otimes x,$$

where $q_{xy} \in K^{\times}$ is a <u>certain</u> collection of scalars, is a <u>braiding</u> (of group type).

Braid groups

The braid group \mathbb{B}_n has generators $\sigma_1, \ldots, \sigma_{n-1}$ and relations

If (V, c) is a braided vector space, then

$$\rho \colon \mathbb{B}_n \to \mathbf{GL}(V^{\otimes n}), \quad \sigma_i \mapsto c_i,$$

is a group homomorphism, where

$$c_k = \mathrm{id}^{\otimes (k-1)} \otimes c \otimes \mathrm{id}^{\otimes (n-k-1)}.$$

Braid groups

For example, let n = 4. If we represent the braiding c by the diagram

then the maps c_1 and c_2 are given by

respectively.

A braided vector space (V,c) gives a special type of algebra called the Nichols algebra $\mathcal{B}(V,c).$

Nichols algebras

The Nichols algebra of (V, c) is constructed as a quotient of the tensor algebra of V:

$$\mathcal{B}(V,c) = K \oplus V \oplus \bigoplus_{n \geq 2} V^{\otimes n} / \ker \mathfrak{S}_n,$$

where \mathfrak{S}_n is the quantum symmetrizer. For example:

$$\mathfrak{S}_{2} = id + c,$$

$$\mathfrak{S}_{3} = id + c_{1} + c_{2} + c_{1}c_{2} + c_{2}c_{1} + c_{1}c_{2}c_{1},$$

$$\vdots$$

$$\mathfrak{S}_{n+1} = (id \otimes \mathfrak{S}_{n})(id + c_{1} + c_{1}c_{2} + \dots + c_{1}c_{2} \cdots c_{n}).$$

Some well-known examples of Nichols algebras:

- ► (*V*, flip) gives the symmetric algebra.
- ightharpoonup (V, -flip) gives the exterior algebra.

Nichols algebras (also known as Fock spaces) were rediscovered several times: Nichols, Woronowicz, Lusztig, Majid...

Problem

Classify finite-dimensional Nichols algebras.

For applications, the interesting Nichols algebras all come from groups. Which braided vector spaces should we consider?

Yetter-Drinfeld modules (over groups)

Let G be a group. A Yetter-Drinfeld module V over G is a G-graded KG-module

$$V = \bigoplus_{g \in G} V_g$$

such that

$$g \cdot V_h \subseteq V_{ghg^{-1}}$$

for all $g, h \in G$.

Fact:

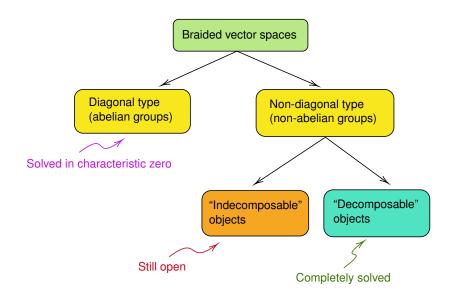
A Yetter-Drinfeld module *V* is a braided vector space:

$$c(v\otimes w)=g\cdot w\otimes v,$$

where $v \in V_g$ and $w \in V$.

Moreover, the category ${}^{KG}_{KG}\mathcal{YD}$ of Yetter-Drinfeld modules over KG is a braided tensor category.

The state of the art



Braided vector spaces of diagonal type

A braided vector space V is of diagonal type if there exists a basis $\{v_1, \cdots, v_{\theta}\}$ of V such that

$$c(v_i \otimes v_j) = q_{ij}v_j \otimes v_i, \quad q_{ij} \in K^{\times}.$$

Nichols algebras of braided vector spaces of diagonal type have many interesting properties and applications.

Complex finite-dimensional Nichols algebra of diagonal type:

- Classified by Heckenberger.
- ► Generators and relations: Angiono.
- ► Applications to Hopf algebras: Andruskiewitsch and Schneider's classification.
- Applications to physics: Semikhatov, Lentner.

What about non-diagonal Nichols algebras?

pointed Hopf algebras with non-abelian coradical.

This is important to study combinatorial Schubert calculus and

Let (V,c) be a braided vector space not of diagonal type. There are two cases to consider:

- 1. V is "indecomposable".
- **2.** $V = V_1 \oplus \cdots \oplus V_{\theta}$ is "decomposable", where $\theta \geq 2$.

The classification problem is solved for "decomposable" Yette Drinfeld modules.	ter-

What does it mean "decomposable"?

We first start with the case of two irreducible summands.

Remark (Graña)

If $c_{W,V}c_{V,W} = \mathrm{id}_{V \otimes W}$ then

$$\mathcal{B}(V \oplus W) \simeq \mathcal{B}(V) \otimes \mathcal{B}(W)$$

as graded vector spaces.

The remark implies that in order to be in the "decomposable" case one needs to assume that

$$c_{W,V}c_{V,W} \neq \mathrm{id}_{V\otimes W}$$
.

Technical definition:

The support of a Yetter-Drinfeld module

$$V = \bigoplus_{g \in G} V_g$$

is the set

$$suppV = \{g \in G : V_g \neq 0\}.$$

Fact:

 $\mathrm{supp}(V)$ is a union of conjugacy classes of G.

Theorem (with Heckenberger)

Let G be a non-abelian group, and V and W be two absolutely irreducible Yetter-Drinfeld modules over KG. Assume that

- ▶ *G* is generated by the support of $V \oplus W$,
 - $ightharpoonup c_{W,V}c_{V,W} \neq \mathrm{id}_{V\otimes W}$, and
- $\blacktriangleright \dim \mathcal{B}(V \oplus W) < \infty.$

Then G is either an epimorphic image of a certain central extension T of the group $\mathbf{SL}_2(3)$, or an epimorphic image of a certain central extension of the dihedral group of order 2n for $n \in \{2,3,4\}$.

Non-diagonal type: the "decomposable" case

The theorem has deep consequences. One obtains:

- ightharpoonup The structure of the braided vector spaces V and W.
- ▶ The dimension of $\mathcal{B}(V \oplus W)$.

Theorem (with Heckenberger)

Let G be a non-abelian group, and V and W be two irreducible Yetter-Drinfeld modules over $\mathbb{C}G$. Assume that

- ▶ *G* is generated by the support of $V \oplus W$,
- $c_{W,V}c_{V,W} \neq \mathrm{id}_{V\otimes W}$, and

Then $\mathcal{B}(V \oplus W)$ is one of following Nichols algebras:

$\dim(V \oplus W)$	$\dim \mathcal{B}(V \oplus W)$
4	64
4 or 5	10368
5	2304
5	80621568
6	262144

An example: the group T

Let us show one of the examples we found (over the complex numbers).

The group T can be presented by generators z, x_1, x_2, x_3, x_4 and relations

$$zx_i = x_i z, \quad i \in \{1, 2, 3, 4\},$$

and

$$x_1x_2 = x_4x_1 = x_2x_4,$$

 $x_1x_3 = x_2x_1 = x_3x_2,$
 $x_2x_3 = x_4x_2 = x_3x_4,$
 $x_1x_4 = x_3x_1 = x_4x_3.$

An example: the module V

Let G be a non-abelian epimorphic image of the group T. We show the structure of the modules V and W.

How does V look like? Let ρ be a character of the centralizer $G^z=G$ and $v\in V_z\setminus\{0\}$. Then $\{v\}$ is basis of V and the action of G on V is given by

$$zv = \rho(z)v$$
, $x_iv = \rho(x_1)v$ for all $i \in \{1, 2, 3, 4\}$.

An example: the module *W*

How does W look like? Let σ be a character of $G^{x_1} = \langle x_1, x_2x_3, z \rangle$ with $\sigma(x_1) = -1$ and $\sigma(x_2x_3) = 1$. Let $w_1 \in W_{x_1}$ be such that $w_1 \neq 0$. Then the vectors

$$w_1, w_2 = -x_4w_1, w_3 = -x_2w_1, w_4 = -x_3w_1$$

form a basis of W. The degrees of these vectors are x_1 , x_2 , x_3 and x_4 , respectively. The action of G on W is given by the following table:

W	w_1	w_2	w_3	w_4
x_1	$-w_1$	$-w_4$	$-w_2$	$-w_3$
x_2	$-w_3$	$-w_2$	$-w_4$	$-w_1$
x_3	$-w_4$	$-w_1$	$-w_3$	$-w_2$
x_4	$-w_2$	$-w_3$	$-w_1$	$-w_4$
z	$\sigma(z)w_1$	$\sigma(z)w_2$	$\sigma(z)w_3$	$\sigma(z)w_4$

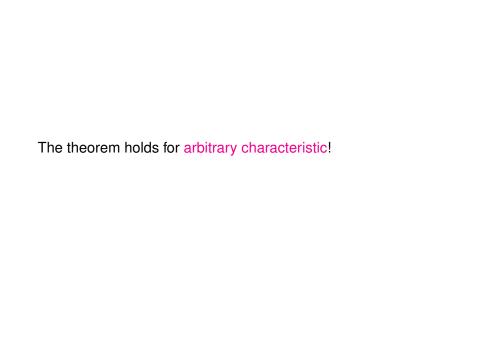
An example: the dimension

Assume further that

$$(\rho(x_1)\sigma(z))^2 - \rho(x_1)\sigma(z) + 1 = 0, \quad \rho(x_1z)\sigma(z) = 1.$$

Then

$$\dim \mathcal{B}(V \oplus W) = 6^3 \, 72^3 = 80621568.$$



The Nichols algebras of the classification

$\dim(V \oplus W)$	$\dim \mathcal{B}(V \oplus W)$	characteristic	
4	64		
4	1296	3	
4 or 5	10368	$\neq 2,3$	
4 or 5	5184	2	
4 or 5	1152	3	
4 or 5	2239488	2	
5	2304		
5	80621568	$\neq 2$	
5	1259712	2	
6	262144	≠ 2	
6	65536	2	

We now study the case of at least three irreducible summands.

To be in the "decomposable" case, we need to assume that

$$M = (M_1, \ldots, M_\theta)$$

is connected, i.e. $M_1 \oplus \cdots \oplus M_{\theta}$ admits no decomposition

$$M_1 \oplus \cdots \oplus M_{\theta} = M' \oplus M''$$

as Yetter-Drinfeld modules over G with $M' \neq 0$, $M'' \neq 0$ and $c_{M'',M'}c_{M',M''}=\mathrm{id}$.

We need to introduce the following terminology.

Skeletons (of finite type). A skeleton (of finite-type) is a decorated Dynkin diagram (of finite-type) that encodes the structure of the Yetter-Drinfeld module.

The following are the simply-laced skeleton of finite-type (i.e. Dynkin types ADE):

$$\alpha_{\theta}$$
 :----:
 δ_{θ} :----:
 ϵ_{6} :----:
 ϵ_{7} :----:
 ϵ_{8} :----:

The other skeletons of finite type are:

$$char K = 3$$

 $(3)_{-n} = 0$

 $char K \neq 2$

$$(3)_{-n} = 0$$

$$n n^{-1} n$$

$$n n^{-1} n$$

$$\beta_3' \quad \stackrel{p}{\overset{p-1}{\cdot}} \stackrel{p}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\overset{\cdot}{\cdot}}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{\cdot}{\cdot}} \stackrel{\cdot}{\overset{$$

$$p p^{-1}p$$

$$p p^{-1} p$$

 β_2'' $p p^{-1}$ γ_{θ} :----: char $K \neq 2$

 $\varphi_4 \quad \bullet \xrightarrow{-1} \bullet \xrightarrow{-1} \vdots$

Here $(n)_t = 1 + t + \cdots + t^{n-1}$.

Theorem (with Heckenberger)

Let $\theta \geq 3$, G be a non-abelian group and

$$M = (M_1, \dots, M_{ heta})$$

be a connected tuple of absolutely irreducible Yetter-Drinfeld modules over KG. Then $\dim \mathcal{B}(M_1 \oplus \cdots \oplus M_\theta) < \infty$ if and only if M has a skeleton of finite-type.

The theorem gives the dimensions of

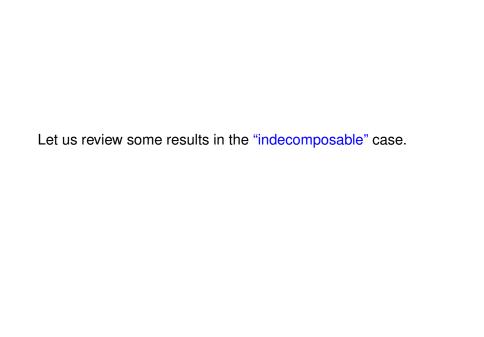
$$\mathcal{B}(M)=\mathcal{B}(M_1\oplus\cdots\oplus M_\theta)$$

and the structure of the M_i can be obtained from the skeletons of finite type.

Example:

In the case where M has a simply-laced skeleton of finite type (Dynkin type ADE), the dimensions of the Nichols algebras in the classification are

$\dim \mathcal{B}(M)$	$4^{\theta(\theta+1)/2}$	$4^{\theta(\theta-1)}$	4 ³⁶	463	4 ¹²⁰
skeleton	α_{θ}	$\delta_{ heta}$	ε_6	ε_7	ε_8



Theorem (with Andruskiewitsch, Fantino and Graña)

Let $n \geq 5$ and $G = \mathbb{A}_n$. If $0 \neq V \in {}^{\mathbb{C}G}_{\mathbb{C}G}\mathcal{YD}$, then $\dim \mathcal{B}(V) = \infty$.

A similar result is valid for sporadic simple groups.

Theorem (with Andruskiewitsch, Fantino and Graña)

Let G be a finite sporadic simple group. If $G \notin \{Fi_{22}, B, M\}$ and $0 \neq V \in {}^{\mathbb{C}G}_{\mathbb{C}G}\mathcal{YD}$, then $\dim \mathcal{B}(V) = \infty$.

Question

Let G be the Fischer group Fi_{22} , the Baby Monster B or the Monster M, and let $0 \neq V \in {}^{\mathbb{C}G}_{G}\mathcal{YD}$. Is $\dim \mathcal{B}(V) = \infty$?

Several results concerning Nichols algebras over finite simple groups of Lie type were found by Andruskiewitsch, Carnovale and García.

Conjecture

Let G be a finite simple group. If $0 \neq V \in {}^{\mathbb{C}G}_{\mathbb{C}G}\mathcal{YD}$, then $\dim \mathcal{B}(V) = \infty$.

Question

Let
$$n \geq 6$$
 and $0 \neq V \in \mathbb{CS}_n \mathcal{YD}$. Is dim $\mathcal{B}(V) = \infty$?

Remarks:

- Some partial results are known.
- ► The problem is related to Fomin–Kirillov algebras and Schubert calculus.

To tackle this problem one studies Nichols algebras associated with conjugacy classes of symmetric groups.

For $n \ge 3$, let X_n be the conjugacy class of (12) in the symmetric group \mathbb{S}_n . Let V_n be the complex vector space with basis

$$\{v_g:g\in X_n\}$$

and

$$c(v_g \otimes v_h) = -v_{ghg^{-1}} \otimes v_g.$$

Question

When is $\dim \mathcal{B}(V_n) = \infty$?

Fact:

 $\mathcal{B}(V_n)$ is finite-dimensional for $n \in \{3, 4, 5\}$.

n	$\dim V_n$	$\dim \mathcal{B}(V_n)$
3	3	12
4	6	576
5	10	8294400

Conjectures

- ▶ dim $\mathcal{B}(V_n) = \infty$ for $n \ge 6$.
- $ightharpoonup \mathcal{B}(V_n)$ is quadratic.

So far only few examples of finite-dimensional Nichols algebras over "indecomposable" braided vector spaces of group type are known!

"indecomposable" case: known examples

$\dim V$	$\dim \mathcal{B}(V)$	characteristic
3	12	
3	432	2
4	36	2
4	72	$\neq 2$
4	5184	
6	576	
6	576	
6	576	
5	1280	
5	1280	
7	326592	
7	326592	
10	8294400	
10	8294400	

Question

Are there other finite-dimensional Nichols algebras?

Theorem (with Heckenberger and Meir)

Let G be a non-abelian group and $V \in {^{\mathbb{C}G}_{\mathbb{C}G}}\mathcal{YD}$ be an irreducible of prime dimension. Assume that $\operatorname{supp} V$ generates G. Then $\dim \mathcal{B}(V) < \infty$ if and only if $\mathcal{B}(V)$ is one of the following Nichols algebras:

$\dim V$	$\dim \mathcal{B}(V)$
3	12
5	1280
5	1280
7	326592
7	326592

The tools used to previous the previous theorem can be push

finite-dimensional Nichols algebras.

forward to obtain far more general theorems on the structure of

Theorem (with Andruskiewitsch and Heckenberger)

Let G be a non-cyclic solvable group and $V \in {^{\mathbb{C}G}_{\mathbb{C}G}}\mathcal{YD}$. Assume that $\operatorname{supp} V$ generates G. If $\dim \mathcal{B}(V) < \infty$, then V is irreducible and $\mathcal{B}(V)$ is one of the following "known" Nichols algebras:

$\dim V$	$\dim \mathcal{B}(V)$	
3	12	
4	72	
4	5184	
5	1280	two algebras
6	576	three algebras
7	326592	two algebras

By combining the previous theorem with the celebrated <u>lifting</u> method of Andruskiewitsch and Schneider, one obtains a Feit—Thompson-like theorem for pointed Hopf algebras.